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INTRODUCTION: Frontotemporal dementia
(FTD) and amyotrophic lateral sclerosis (ALS)
are fatal neurodegenerative diseases that share
clinical and neuropathological features. Fur-
thermore, the most common genetic cause
of both FTD and ALS is a GGGGCC (G4C2)
repeat expansion in the C9orf 72 gene. This re-
peat expansion leads to several abnormalities,
including C9orf72 haploinsufficiency, the accu-
mulation of repeat RNA, and the production
of five aggregation-prone proteins composed
of repeating dipeptides. However, the contri-
bution of these abnormalities to disease path-
ogenesis remains unresolved.

RATIONALE: Among the five dipeptide re-
peat proteins nonconventionally translated
from expanded G4C2 repeats, proline-arginine
(PR) repeat proteins [poly(PR) proteins] have
proven especially toxic in various model sys-
tems. Their involvement in C9orf72-associated

FTD and ALS (c9FTD/ALS) has nevertheless
been questioned because poly(PR) pathology
is relatively infrequent in c9FTD/ALS patient
brains. Postmortem tissues, however, repre-
sent end-stage disease and do not necessar-
ily reflect early events in the disease process.
Therefore, we generated mice that express
poly(PR) in the brain to evaluate the temporal
consequences of its expression in a mamma-
lian in vivo model. More specifically, we en-
gineered mice to express green fluorescent
protein (GFP)–conjugated (PR)50 (a 50-repeat
PR protein) or GFP via intracerebroventricular
administration of adeno-associated viral vectors
and thenperformedbehavioral, pathological, and
transcriptomic characterizations of poly(PR)
mice in comparison with control GFP mice.

RESULTS: We found that ~60% of poly(PR)-
expressing mice died by 4 weeks of age and
had significantly decreased brain and body

weights at death compared with age-matched
GFP control mice. Poly(PR) mice that escaped
premature death developedmotor andmemory
impairments, likely as a consequence of their
progressive brain atrophy, neuron loss, loss of
poly(PR)-positive cells, and gliosis. In inves-
tigating the mechanisms by which poly(PR)
caused neurodegeneration and functional de-
ficits, we found that poly(PR) localized to het-
erochromatin (highly condensed regions of
transcriptionally silent chromatin) and caused
abnormal histone H3 methylation, features

that we also detected in
brain tissues frompatients
with c9FTD/ALS.Addition-
ally, we observed aberra-
tions in nuclear lamins
and heterochromatin pro-
tein 1a (HP1a), key pro-

teins thatmaintain heterochromatin structure
and regulate gene silencing. Nuclear lamina
invaginations and decreased HP1a protein ex-
pression were seen in poly(PR)-positive cells
in poly(PR) mice, and in vitro studies demon-
strated that poly(PR) disrupted HP1a liquid
phases. Because poly(PR)-induced histone H3
posttranslational modifications, lamin invagi-
nations, and decreased HP1a levels could pro-
foundly affect gene expression, we compared
transcriptome profiles between control and
poly(PR) mice. As well as analyzing differen-
tially expressed genes, we examined repetitive
element expression given that repetitive DNA
sequences make up a large portion of hete-
rochromatin and that repetitive elements
are substantially up-regulated in the brains
of c9FTD/ALS patients. Whereas themajority
of differentially expressed genes in poly(PR)
mice were down-regulated, repetitive ele-
ments were markedly up-regulated, and this
up-regulation was accompanied by the accu-
mulation of double-strandedRNA. Furthermore,
we confirmed that HP1a depletion caused
double-strandedRNA accumulation in human
induced pluripotent stem cell–derived neu-
rons and decreased their survival.

CONCLUSION: Our studies provide compel-
ling evidence that, by disrupting HP1a liquid
phases, interactingwith heterochromatin, and
eliciting aberrant histoneposttranslationalmod-
ifications, poly(PR) adversely influences hetero-
chromatin structure. Consequently, repetitive
element expression is induced and double-
stranded RNA accumulates, contributing to
the neurodegeneration seen in patients with
c9FTD/ALS. Rescuing histone methylation,
lamin, and HP1a abnormalities and/or inhib-
iting abnormal repetitive element expression
may represent promising therapeutic strate-
gies for treating c9FTD/ALS.▪

RESEARCH

Zhang et al., Science 363, 707 (2019) 15 February 2019 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: petrucelli.leonard@mayo.edu
Cite this article as Y.-J. Zhang et al., Science 363, eaav2606
(2019). DOI: 10.1126/science.aav2606

Poly(PR) interactions with heterochromatin cause repetitive element expression.
Heterochromatin consists of tightly packed nucleosomes, DNA segments wound around
histones. The C9orf72-associated dipeptide repeat protein poly(PR) disrupts HP1a liquid
compartments on heterochromatin, thus evicting HP1a from heterochromatin and causing
its degradation. Poly(PR) also binds heterochromatin and causes abnormal histone H3
methylation. These events alter heterochromatin structure and ultimately increase repetitive
element expression and double-stranded RNA accumulation.
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How hexanucleotide GGGGCC (G4C2) repeat expansions in C9orf72 cause frontotemporal
dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. We developed
a mouse model engineered to express poly(PR), a proline-arginine (PR) dipeptide repeat
protein synthesized from expanded G4C2 repeats. The expression of green fluorescent
protein–conjugated (PR)50 (a 50-repeat PR protein) throughout the mouse brain yielded
progressive brain atrophy, neuron loss, loss of poly(PR)-positive cells, and gliosis,
culminating in motor and memory impairments. We found that poly(PR) bound DNA,
localized to heterochromatin, and caused heterochromatin protein 1a (HP1a) liquid-phase
disruptions, decreases in HP1a expression, abnormal histone methylation, and nuclear
lamina invaginations. These aberrations of histone methylation, lamins, and HP1a, which
regulate heterochromatin structure and gene expression, were accompanied by repetitive
element expression and double-stranded RNA accumulation. Thus, we uncovered
mechanisms by which poly(PR) may contribute to the pathogenesis of C9orf72-associated
FTD and ALS.

F
rontotemporal dementia (FTD) and amy-
otrophic lateral sclerosis (ALS), two fatal
neurodegenerative diseases, share neuro-
pathological features, such as TAR DNA-
binding protein 43 (TDP-43) pathology,

and clinical symptoms. FTD patients typically
present with progressive changes in behavior,
executive function, and/or language caused by
frontal and temporal lobe degeneration but can
also develop ALS-like motor symptoms. Patients

with ALS, which is caused by upper and lower
motor neuron loss, develop muscle weakness,
atrophy, and paralysis. In addition, ~50% of ALS
patients experience cognitive and/or behavioral
changes. The clinical and neuropathological over-
lap between FTD and ALS is accompanied by
genetic overlap: A hexanucleotide GGGGCC (G4C2)
repeat expansion in intron 1 of chromosome 9
open reading frame 72 (C9orf 72) is the most
common known genetic cause of FTD and ALS
(1, 2). The mechanisms by which C9orf 72 G4C2

repeat expansions cause C9orf 72-associated FTD
and ALS (c9FTD/ALS) are being extensively in-
vestigated. Mounting evidence implicates both
loss-of-function and gain-of-functionmechanisms
in c9FTD/ALS pathogenesis. For instance, loss of
C9ORF72 causes immune dysregulation (3, 4)
and impairs the autophagy-lysosome pathway
(5–9), which may enhance abnormal protein
deposition. The accumulation of expanded repeat-
containing transcripts, conversely, is thought to
cause toxic gains of function. These transcripts
bind several RNAbinding proteins and formRNA
foci, thus impairing RNA metabolism (10–14),
nucleocytoplasmic transport (15, 16), and RNA
transport granule function (17). Moreover, these
transcripts produce glycine-alanine (GA), glycine-

proline (GP), glycine-arginine (GR), proline-
arginine (PR), and proline-alanine (PA) dipep-
tide repeat (DPR) proteins [poly(GA), poly(GP),
poly(GR), poly(PR), andpoly(PA)] through repeat-
associated non-ATG translation (18–22). All five
DPR proteins form neuronal inclusions in patients
with c9FTD/ALS (18–22), but studies in cultured
cells and neurons, as well as Drosophila, suggest
that arginine-rich poly(PR) is themost toxic DPR
protein (23–32). Several mechanisms have been
ascribed to poly(PR)-induced toxicity, including
nucleolar stress (23, 24, 26, 30) and impaired
nucleocytoplasmic transport (27, 28), protein
translation (26, 31), and stress granule dynamics
(26, 30, 32). Although poly(PR) is considered
highly toxic, poly(PR) pathology is infrequent in
c9FTD/ALS patient brains (19, 20, 33, 34), raising
questions about its contribution to c9FTD/ALS
pathogenesis. However, because postmortem tis-
sues represent end-stage disease and do not ne-
cessarily reflect early events in the disease process,
we generated mice that express poly(PR) in the
brain to evaluate the temporal consequences of
poly(PR) expression in a mammalian in vivo
model.

GFP-(PR)50 mice developed
neurodegeneration and
behavioral deficits

We engineeredmice to express green fluorescent
protein (GFP)–conjugated (PR)50 (a 50-repeat PR
protein) or GFP in the brain via intracerebroven-
tricular administration of adeno-associated virus
serotype 1 (AAV1) at postnatal day 0. A codon-
optimized vector was used to specifically express
GFP-(PR)50 in the absence of repeat RNA. Con-
sistent with the reported toxicity of poly(PR)
(23–32), ~60% of GFP-(PR)50–expressing mice
died by 4 weeks of age (fig. S1A) and had signi-
ficantly decreased brain and body weights at
death comparedwith age-matchedGFP-expressing
control mice (fig. S1, B to D). GFP-(PR)50 mice that
escaped premature death were sacrificed at 1 or
3 months of age for more in-depth analyses.
These mice developed a progressive decrease in
brain weight (fig. S2A), and hematoxylin- and
eosin-stained brain sections revealed cortical
thinning and reduced hippocampal volume in
3-month-old GFP-(PR)50 mice compared with
age-matched GFP mice (fig. S2B). With the ex-
ception of 3-month-old femalemice, no difference
in body weight was observed between age- and
sex-matchedGFP andGFP-(PR)50mice (fig. S2C).
Given that our gross morphological analysis

revealed brain atrophy in GFP-(PR)50 mice (fig.
S2B), we examined the relationship between
poly(PR) expression and neuron loss. Immuno-
histochemical staining showed a predominantly
nuclear distribution of poly(PR) in the cortices
and cerebellums of 1- and 3-month-oldGFP-(PR)50
mice (Fig. 1A and fig. S3A). Virtually all poly(PR)-
positive cells were immunoreactive for the neuro-
nalmarkersmicrotubule-associatedprotein2 (MAP2)
and NeuN, indicating that the poly(PR) expression
was neuronal (fig. S3B). Notably, the number of
poly(PR)-positive cells in the cortex and cerebel-
lum significantly decreased from 1 to 3 months
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of age (Fig. 1, A and B, and fig. S3C). Consistent
with these findings, immunoassay and immuno-
blot analyses showed a significant reduction in
poly(PR) levels in 3-month-old GFP-(PR)50 mice
compared with 1-month-old GFP-(PR)50 mice

(Fig. 1C and fig. S3, D and E). The age-dependent
loss of poly(PR)-expressing cells in the cortex
and cerebellum was accompanied by an age-
dependent loss of NeuN-positive cortical neu-
rons (Fig. 1, D and E) and of cerebellar Purkinje

cells (fig. S3, F and G), suggesting that poly(PR)
expression caused cell-autonomous neuron death.
Transgene RNA levels were significantly higher
in GFP mice than in GFP-(PR)50 mice, arguing
against neuronal loss being caused by high trans-
gene expression (fig. S3H).
Inflammation is believed to be a key process in

FTD and ALS and is often associated with neu-
rodegeneration. Hence, we examined the brains
of mice for reactive astrocytes and microglia.
Transcript levels of Gfap, a marker of astroglio-
sis, were significantly increased in the brains of
GFP-(PR)50–expressingmice comparedwith those
of GFP-expressing mice at 3 months of age,
whereas no significant difference was observed
at 1 month of age (fig. S4A). Transcript levels of
CD68, a marker of activated microglia, were
elevated at 1 and particularly 3 months of age
in GFP-(PR)50 mice (fig. S4A). Similar to RNA
levels of Gfap and CD68, Gfap and CD68 protein
expression in the cortices and cerebellums of
3-month-old GFP-(PR)50 mice increased signifi-
cantly, as confirmed by immunohistochemical
analysis (fig. S4, B to E).
Examination of c9FTD/ALS behavioral features

in 3-month-old GFP- or GFP-(PR)50–expressing
mice revealed both motor and cognitive deficits
in the latter group (Fig. 1, F and G). On the
rotarod test, GFP-(PR)50 mice exhibited a de-
creased latency to fall compared with GFP mice
(Fig. 1F), indicating impaired motor skills. GFP-
(PR)50 mice also displayed an associative mem-
ory deficit, as evidenced by a decrease in cued,
but not contextual, freezing in a fear-conditioning
task (Fig. 1G).

Poly(PR) proteins localized to
heterochromatin and elicited aberrant
posttranslational modifications
of histone H3

Previous studies reported that poly(PR) causes
cell death by accumulating in the nucleoli of cul-
tured cells and neurons (23, 24, 26, 30). Our GFP-
(PR)50–expressingmice provided an opportunity
to investigate the mechanisms that underlie
poly(PR)-inducedneurotoxicity in vivo.We began
by examining the cellular localization of poly(PR)
in the brains ofmice and found it to be present in
a punctate pattern throughout the nucleus (Fig.
2A). Whereas some GFP-(PR)50 colocalized with
the nucleolarmarkers nucleophosmin (NPM1) and
fibrillarin (Fig. 2A), the majority of GFP-(PR)50
formed punctate structures that colocalized with
the DNA-staining dye Hoechst 33258, suggestive
of a heterochromatic distribution of poly(PR).
Immunoelectron microscopy revealed that anti-
poly(PR) antibodies decorated heterochromatin
in the cortices of 3-month-old GFP-(PR)50 mice
(Fig. 2B) and purified mouse genomic DNA in-
cubated with synthetic (PR)8 peptides (Fig. 2C).
Furthermore, electron microscopy showed that
incubating genomic DNA with (PR)8 or (GR)8
peptides, but not (GA)8, (GP)8, or (PA)8 peptides,
changed DNA morphology, suggesting an elec-
trostatic interactionbetween thenegatively charged
DNA and the positively charged (PR)8 and (GR)8
(Fig. 2C and fig. S5A). Electrophoretic mobility
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Fig. 1. GFP-(PR)50 mice exhibited neurodegeneration and behavioral deficits. Immunohistochemical
(A) and quantitative (B) analyses of anti-PR immunoreactivity in the cortices of GFP-(PR)50 mice
at 1 month (1M) (n = 8 mice) and 3 months (3M) (n = 10 mice) of age. Scale bars, 100 mm. (C) An
immunoassay was used to compare poly(PR) levels in cortex and hippocampus lysates of GFP-(PR)50
mice at 1 (n = 8 mice) and 3 (n = 9 mice) months of age. (D) Representative images of NeuN-labeled
cells in the cortices of 3-month-old GFP or GFP-(PR)50 mice. Scale bars, 100 mm. (E) Quantification
of NeuN-labeled cells in the cortices of GFP mice at 1 (n = 8 mice) and 3 (n = 10 mice) months of age
or GFP-(PR)50 mice at 1 (n = 8mice) and 3 (n = 10 mice) months of age. (F) Results from a 4-day rotarod
test used to assess motor deficits of 3-month-old mice expressing GFP (n = 12 mice) or GFP-(PR)50
(n = 11 mice) by evaluating their latency to fall from a rotating rod. (G) Results from the fear-conditioning
test used to assess the associative learning and memory of 3-month-old mice expressing GFP (n =
12 mice) or GFP-(PR)50 (n = 11 mice) by evaluating the percentage of time frozen in response to a
conditioned (cued) or unconditioned (context) stimulus. Data are presented as the mean ± SEM. Male
mice are represented by solid symbols, whereas female mice are represented by empty symbols. In
(B) and (C), ****P < 0.0001, **P = 0.0072, two-tailed unpaired t test. In (E), ****P < 0.0001; NS
(not significant), P = 0.1130; two-way ANOVA and Tukey’s post hoc analysis. In (F), NS, P = 0.1269;
**P = 0.0096; ##P = 0.0015; ***P = 0.0005; two-way ANOVA and Tukey’s post hoc analysis. In (G),
****P < 0.0001; NS, P = 0.6007; two-tailed unpaired t test.
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shift assays also demonstrated that single- and
double-stranded DNA bound to (PR)20 and (PR)8
peptides, thus forming higher-molecular-weight,
less mobile complexes that were not observed
when DNA was incubated with (PA)8 peptides
(Fig. 2D and fig. S5B).
To confirm that poly(PR) localized to hetero-

chromatin inmice, cortical sections from3-month-

old GFP-(PR)50 mice were co-stained for poly(PR)
and the heterochromatin markers histone H3
lysine 9 trimethylation (H3K9me3) and histone
H3 lysine 27 trimethylation (H3K27me3) or the
euchromatin marker histone H3 lysine 4 trime-
thylation (H3K4me3) (Fig. 2E and fig. S5, C and
D). These studies established that GFP-(PR)50
essentially completely colocalized with hetero-

chromatinmarkers (Fig. 2E and fig. S5C).Whereas
the euchromatin marker H3K4me3 expectedly
failed to colocalize with Hoechst 33258–stained
heterochromatin in poly(PR)-negative cells, it
did colocalize with heterochromatin and poly
(PR) in GFP-(PR)50–positive cells (Fig. 2E and
fig. S5D). Moreover, levels of both the transcrip-
tionally repressiveH3K27me3 and the transcrip-
tionally active H3K4me3 were increased in cells
expressing poly(PR) compared with poly(PR)-
negative cells in mice expressing GFP-(PR)50
or GFP, and this was especially apparent for
Hoechst 33258–stained pericentromeric hetero-
chromatin (fig. S5, C to F). These data suggest that
poly(PR) influences histone H3 posttranslational
modifications. As in GFP-(PR)50 mice, poly(PR)
colocalized with H3K27me3 andH3K4me3 in the
cortices of c9FTD/ALS patients (Fig. 2F, fig. S5G,
and table S1). In fact, all nuclear poly(PR) in-
clusions detected in the cortices of patients
with c9FTD/ALS colocalized with H3K27me3
and H3K4me3.

Poly(PR) proteins caused nuclear
lamina invaginations, reduced HP1a
protein expression, and disrupted
HP1a liquid phases

Next, we investigated the influence of poly(PR)
on heterochromatin structure by examining the
lamins and heterochromatin protein 1a (HP1a),
key proteins in establishing and maintaining
heterochromatin structure (35–38). Staining of
mouse brain sections for lamins A/C and B
showeda significantly higher frequency of nuclear
lamina invaginations in cells expressing poly(PR)
than in poly(PR)-negative cells in mice expressing
GFP-(PR)50 or GFP (Fig. 3A and fig. S6A). More-
over, we noted that cells expressing poly(PR)
showed markedly decreased expression of HP1a
protein (Fig. 3B and fig. S6B) but not HP1a
mRNA (fig. S6C). Rather, a modest increase in
HP1amRNAwas observed, whichmay reflect a
compensatory mechanism. By contrast to HP1a,
HP1b remained unchanged in poly(PR)-positive
cells (fig. S6D). Despite the finding that (GR)8, like
(PR)8, changedDNAmorphology in vitro (fig. S5A),
HP1a protein levelswerenot altered inGFP-(GR)100
mice (fig. S6E), nor does poly(GR) influence lamin
distribution inmice (39). Because poly(GR) does
not localize to the nucleus, these data suggest that
poly(PR)-induced alterations of lamins andHP1a
are caused by the heterochromatic distribution
of poly(PR) within the nucleus.
Poly(PR) may cause decreases in HP1a by

impairing lamin function (40–42) and may also
influence HP1amore directly, given that both
poly(PR) and HP1a localize to heterochromatin.
HP1a undergoes liquid-liquid phase separation
(LLPS), with liquid HP1a compartments se-
questering compacted chromatin and promot-
ing heterochromatin-mediated gene silencing
(43, 44). Poly(PR) interfereswith the LLPS of RNA
binding proteins with prionlike domains and
promotes aberrant phase transitions from liquid
droplets to solid aggregates (26). Thus, we exam-
inedwhether poly(PR) disrupted preformedHP1a
liquiddroplets in vitro tomimic in vivo conditions
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Fig. 2. Poly(PR) proteins localized to heterochromatin in GFP-(PR)50 mice and c9FTD/ALS
patients. (A) Double immunofluorescence staining for GFP-(PR)50 and nucleolar markers (NPM1 and
fibrillarin) in the cortices of 3-month-old GFP-(PR)50 mice (n = 5). Scale bars, 5 mm. (B) Immunoelectron
microscopy using an anti-PR antibody labeled with gold particles in the cortices of 3-month-old
GFP-(PR)50 mice.The selected region in the low-magnification image (left) is shown at high magnification
(right). * indicates the nucleolus. Arrows indicate gold particles. Scale bars, 0.5 mm (left) and 0.2 mm
(right). (C) Immunoelectron microscopy analysis of purified mouse genomic DNA incubated with (PR)8
peptide by using an anti-PR antibody labeled with gold particles. Arrows indicate gold particles. Scale bars,
50 nm. (D) Electrophoretic mobility shift assays using single- and double-stranded DNA co-incubated (+)
or not (−) with (PR)8 or (PA)8 peptides. AT, AT-rich oligonucleotides; GC, GC-rich oligonucleotides.
(E) Double immunofluorescence staining for GFP-(PR)50 and heterochromatin (H3K9me3 and
H3K27me3) or euchromatin (H3K4me3) markers in the cortices of 3-month-old GFP-(PR)50 mice
(n = 7). Scale bars, 5 mm. (F) Double immunofluorescence staining for poly(PR) and H3K27me3 or
H3K4me3 in the cortices of c9FTD/ALS patients. All nuclear poly(PR) inclusions colocalized with
H3K27me3 (n = 7 cases) and with H3K4me3 (n = 4 cases). Representative images from case 4 are
shown. See also fig. S5F and table S1. Scale bars, 5 mm.
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when poly(PR) encounters liquid HP1a compart-
ments on heterochromatin. We first assembled
HP1a droplets, spherical structures that read-
ily underwent fusion consistent with liquidlike
properties (Fig. 3C, arrow). To these HP1a liquid
droplets, we added (PR)8, which under these
conditions did not phase separate in isolation
(Fig. 3C). Initially, (PR)8 rapidly induced the for-
mation of solid components (Fig. 3D, blue arrows),
which were not observed before the addition of
(PR)8 (Fig. 3C), inside the HP1a liquid droplets.
HP1a droplets then violently burst to release
these solid components (Fig. 3D, black arrows,
andmovie S1). After incubation with (PR)8, few
HP1a droplets remained (Fig. 3D). By contrast,
(PA)8 had no effect on preformed HP1a liquid
droplets (Fig. 3E and movie S2). Thus, (PR)8 but
not (PA)8 rapidly elicited an aberrant phase tran-
sition within HP1a droplets and caused their
rupture.We suggest that thismechanismdirectly

disrupts HP1a liquid compartments on hetero-
chromatin, thereby evicting and depletingHP1a
from heterochromatin, where it is replaced by
poly(PR) in vivo.

Poly(PR) enhanced repetitive element
expression and caused the accumulation
of double-stranded RNA

Given that poly(PR) elicited aberrant post-
translational modifications of histone H3 and
caused lamin invagination and decreases in HP1a
protein, which are expected to influence gene
expression, we compared transcriptome pro-
files between 3-month-old mice expressing GFP
or GFP-(PR)50. Clustering of the 1000 most var-
iable genes showed distinct expression profiles
for GFP-(PR)50 and GFP mice (Fig. 4A). Of the
2196 genes that were differentially expressed in
GFP-(PR)50 mice, the majority (1552) were down-
regulated (Fig. 4B and dataset S1). Weighted

gene coexpression network analysis of differen-
tially expressed genes with a merging distance
of 0.01 identified 13 modules, all of which were
significantly associated with genotype after ad-
justment for multiple tests (Fig. 4C and dataset
S1). Gene Ontology enrichment analysis across
these modules identified the pink and blue mod-
ules as the most significantly enriched. Within
the pink module, molecular function and biol-
ogical process analyses, respectively, identified
top terms specific to unfolded protein binding
(P = 2.13 × 10−8; Bonferroni correction = 8.77 ×
10−5) and protein folding (P = 3.05 × 10−9;
Bonferroni correction = 3.63 × 10−5). Within the
blue module, molecular function, cellular com-
ponent, and biological process analyses, re-
spectively, identified top terms specific to the
structural constituent of the ribosome (P = 9.26 ×
10−8; Bonferroni correction = 3.81 × 10−4), ribo-
some biogenesis (P = 1.86 × 10−6; Bonferroni
correction = 2.21 × 10−2), and the ribosomal sub-
unit (P = 2.26 × 10−6; Bonferroni correction =
3.75 × 10−3). These pathways have been impli-
cated in c9FTD/ALS (26, 31, 39, 45, 46).
In addition to identifying differentially ex-

pressed genes in GFP-(PR)50 mice, we examined
the expression of repetitive elements (REs) given
our findings that poly(PR) localized to hetero-
chromatin and that repetitive DNA sequences,
which make up a large portion of heterochro-
matin (47), are significantly up-regulated in the
brains of patients with c9ALS (48). By using a
combination of RepEnrich2 and DESeq2, we
identified a total of 1067 RepeatMasker-derived
REs belonging to multiple repeat classes (dataset
S2). Notably, the proportions of REs in distinct
classes were comparable among GFP, GFP-(PR)50,
and GFP-(GR)100 mice (table S2). In GFP-(PR)50
mice compared with control GFP mice, 172 REs
were differentially expressed [false discovery rate
(FDR) < 0.10], with ~92% of these being up-
regulated (Fig. 5A). This marked up-regulation
of REs contrasted with the down-regulation of
the majority of differentially expressed genes
(Fig. 4B). Quantitative polymerase chain reac-
tion (qPCR) analysis of select RE hits confirmed
their up-regulation (Fig. 5B and fig. S7A). No
specific classes of REs were enriched, indicating
a global change in their expression. Of note, no
RE was differentially expressed in mice express-
ing GFP-(GR)100 (fig. S7B). Because RE transcripts
were elevated in GFP-(PR)50 mice and because
these transcripts can form double-stranded RNA
(dsRNA) (49–51), we evaluated whether dsRNA
was produced in GFP-(PR)50 mice. Immunofluo-
rescence staining with an antibody against dsRNA
revealed that dsRNA was specifically increased
in cells expressing poly(PR) (Fig. 5C and fig. S7C).
Accumulation of dsRNA was not observed in
mice expressing GFP-(GR)100 (fig. S7D).
A previous study found that the deletion of

HPL-2, aCaenorhabditis elegans ortholog ofHP1a,
leads to the accumulation of dsRNA (52). To fur-
ther determinewhether the reduction ofHP1a in
GFP-(PR)50 mice contributed to the observed ac-
cumulation of dsRNA, we repressed HP1a trans-
cription in human cells by CRISPR interference
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Fig. 3. Poly(PR) proteins caused lamin invaginations, reduced HP1a levels, and disrupted
HP1a liquid droplets. (A) Double immunofluorescence staining for GFP-(PR)50 and lamin A/C
or lamin B in the cortices of 3-month-old GFP (n = 11) or GFP-(PR)50 (n = 7) mice. Scale bars,
10 mm. (B) Double immunofluorescence staining for GFP-(PR)50 and HP1a in the cortices of
3-month-old GFP-(PR)50 mice (n = 7). Scale bars, 5 mm. (C) Differential interference contrast
(DIC) microscopy images of HP1a droplets at a concentration of 90 mM HP1a before the addition
of (PR)8. The arrow indicates the fusing of two liquid droplets. By contrast, (PR)8 peptides at a
concentration of 245 mM did not form droplets under these conditions. (D) DIC microscopy images
of HP1a droplets at 90 mM HP1a (top, low magnification; bottom, high magnification) after the
addition of 245 mM (PR)8. Black arrows indicate the bursting of a preformed HP1a droplet after the
addition of (PR)8. Small blue arrows indicate the solid components within HP1a droplets.
(E) DIC microscopy images of HP1a droplets at 90 mM HP1a (top, low magnification; bottom, high
magnification) after the addition of 245 mM (PA)8 peptides. In (D) and (E), turquoise arrows
between images indicate progression over time.

RESEARCH | RESEARCH ARTICLE
on F

ebruary 14, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


(CRISPRi), which is highly specific compared
with RNA interference–based approaches (53, 54).
To this end, we individually transduced human
induced pluripotent stem cells (iPSCs) stably ex-
pressing nuclease-deactivated CRISPR-associated
protein 9 fused to blue fluorescent protein and
the KRAB repressor domain (dCas9-BFP-KRAB)
(55) with five single guide RNAs (sgRNAs) pre-
dicted to mediate CRISPRi of the HP1a gene.
Because sgRNA 1 had the greatest ability to de-
crease HP1a protein expression (fig. S7E), we
differentiated dCas9-BFP-KRAB iPSC cells express-
ing HP1a sgRNA 1 into neurons. HP1a sgRNA
1 caused a ~40% reduction of HP1a RNA, as
assessed by qPCR (fig. S7F). Notably, dsRNA ac-
cumulated only in iPSC-differentiated neurons
depleted of HP1a (Fig. 5D). Moreover, cells posi-
tive for dsRNA showed immunoreactivity for
active caspase-3 (Fig. 5E), suggesting that dsRNA
is toxic to neurons.

Poly(PR) caused abnormalities in
nucleocytoplasmic transport proteins

Earlier studies have demonstrated that poly(PR)
aberrantly affects nuclear pores and impairs nu-
cleocytoplasmic transport in cultured cells and
yeast models (27, 28). Because poly(PR) caused
lamin invagination in poly(PR)mice (Fig. 3A and
fig. S6A), which may affect nuclear membrane
integrity, we investigated whether poly(PR) also
perturbs the nucleocytoplasmic transport factor
Ran guanosine triphosphatase–activating protein
1 (RanGAP1) and nuclear pore complex (NPC)
proteins, the latter assessed by using an antibody

that recognizes Phe-x-Phe-Gly (where x is usually
a small residue such as Ser, Gly, or Ala) nucleoporin
repeats. We observed abnormal nuclear membrane
invaginations immunopositive for RanGAP1 or
NPC proteins in poly(PR)-positive cells compared
with poly(PR)-negative cells in mice expressing
GFP-(PR)50 or GFP (Fig. 6 and fig. S8A). RanGAP1
was abnormally distributed in virtually all poly
(PR)-positive cells (Fig. 6A and fig. S8A), whereas
NPC protein abnormalities in poly(PR)-positive
cells were less frequent (Fig. 6B).
Given that defects in RanGAP1 may impair the

nucleocytoplasmic transport of TDP-43 and pro-
mote its cytoplasmic accumulation, we evaluated
whether poly(PR) caused TDP-43 pathology, a
hallmark feature of c9FTD/ALS. However, sim-
ilar to mice expressing poly(GA) or poly(GR)
(39, 56), poly(PR)-expressing mice did not de-
velop TDP-43 inclusions, suggesting that the
expression of individual DPR proteins is insuffi-
cient to cause TDP-43 pathology within the time
frames examined (Fig. 6C and fig. S8B). Addi-
tional pathological mechanisms associated with
poly(PR) include stress granule formation and
nucleolar stress (23, 24, 26, 30). Nevertheless, no
evidence of stress granules was seen in the brains
of GFP-(PR)50 mice (fig. S8C). This may be due to
the absence of cytoplasmic poly(PR) inclusions,
which, similar to poly(GR) cytoplasmic inclu-
sions, have been shown to initiate stress granule
formation and sequester stress granule–associated
proteins (26, 39). Likewise, although nucleolar
poly(PR) was occasionally observed in GFP-
(PR)50 mice, no sign of nucleolar stress (i.e.,

repressed ribosomal RNA expression) was de-
tected (fig. S8, D and E), suggesting that nu-
cleolar poly(PR) levels must reach a threshold to
induce nucleolar stress.

Discussion

In this study, we found that poly(PR) expression
in the brain caused premature death in ~60% of
mice, with surviving GFP-(PR)50mice developing
age-dependent brain atrophy and neuron loss, as
well as impaired motor and memory functions.
GFP-(PR)50 mice that succumbed to an early
death exhibited higher poly(PR) levels than sur-
vivingmice (37.89 ± 11.88 versus 23.99 ± 7.071 ng/
mg; P = 0.0367, two-tailed unpaired t test), indi-
cative that poly(PR) toxicity is dose dependent.
The age-dependent neuron loss in survivingmice
was accompanied by a similar age-dependent
loss of poly(PR)-positive cells, suggesting that
poly(PR)-positive neurons progressively degen-
erated. These data are consistent with the results
of a study showing that poly(PR) expression causes
cultured neurons to die in a time-dependent
fashion (24) and may also explain, at least in
part, why poly(PR) pathology is rare in post-
mortem brain tissues from c9FTD/ALS patients
(19, 20, 33, 34), which reflect the end stage of
disease.
The neurodegeneration and behavioral defi-

cits of GFP-(PR)50 mice were associated with the
localization of poly(PR) to heterochromatin, high-
ly condensed regions of transcriptionally silent
chromatin (47). A heterochromatic localization
of poly(PR) was also observed in c9FTD/ALS
patients. Both increased H3K27me3, which re-
presses gene expression, and increasedH3K4me3,
which activates gene expression, were observed in
the heterochromatin of poly(PR)-expressing cells.
Although the mechanism(s) by which poly(PR)
elicited aberrant posttranslationalmodifications
of histone H3 remain to be determined, these
data suggest that poly(PR) causes epigenetic
changes, whichmay influence heterochromatin
function in c9FTD/ALS. Our RNA-sequencing
(RNA-seq) and qPCR analyses of GFP-(PR)50
mouse brain tissues revealed that RE sequences,
which are enriched in heterochromatin DNA,
were significantly up-regulated. Poly(PR)-induced
RE expression in cultured cells was also evident
through the accumulation of dsRNA, which can
be formed by REs (49–51). The expression of REs,
which is observed in several neurodegenerative
diseases, is associatedwith neurotoxicity (49, 57, 58).
Increased RE expression (48) and dsRNA accu-
mulation (57) occur in c9FTD/ALS patients, and
we reported previously that increases in general
transcriptionmay contribute to this enhanced
RE expression (48). It is thus noteworthy that
despite themarked up-regulation of REs in GFP-
(PR)50mice, themajority of differentially expressed
geneswere down-regulated. Therefore, data from
our GFP-(PR)50mice suggest that poly(PR) plays
a role in RE expression in c9FTD/ALS but does
so through heterochromatin alterations rather
than enhanced transcription.
To more thoroughly evaluate how poly(PR)

causes abnormal RE expression, we investigated
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Fig. 4. Transcriptome alterations were identified in the brains of mice expressing GFP-(PR)50.
(A) Hierarchical clustering of the 1000 most variable genes between 3-month-old GFP mice
(n = 4) and GFP-(PR)50 mice (n = 7). (B) MA plots of up- and down-regulated genes (FDR < 0.01)
in the cortices and hippocampi of 3-month-old mice expressing GFP-(PR)50 (n = 7) compared with
those of GFP controls (n = 4). The MA plot is based on the Bland-Altman plot, where M represents
the log2 fold change (y axis) and A represents the log of mean gene expression (x axis). (C) Gene
modules identified in brains of 3-month-old mice expressing GFP-(PR)50 (n = 7 mice) through
weighted gene coexpression correlation network analyses using differentially expressed genes.
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lamins and HP1a, key proteins in establishing
and maintaining heterochromatin structure and
in regulating gene silencing (35–38). Lamin dys-
function and/or loss of HP1a causes heterochro-
matin relaxation and mitigates gene silencing,
which result in the increased expression of DNA
REs within heterochromatin regions (35–38). It
is thus of interest that the localization of poly(PR)
to heterochromatin coincided with lamin in-
vaginations and decreased HP1a expression in
the brains of GFP-(PR)50 mice. Whereas poly(PR)
may cause HP1a depletion indirectly by induc-
ing lamin dysfunction (40–42), it may also di-
rectly disrupt HP1a liquid compartments on
heterochromatin, thereby evicting HP1a and
rendering it vulnerable to degradation. Our data
raise the following possible scenario: poly(PR)
ruptures HP1a liquid phases on heterochroma-
tin, interacts directly with DNA, and accumu-
lates on heterochromatin. In turn, the disruption
of HP1a liquid phases leads to lamin invagina-
tions andHP1a depletion, which cause increased
RE expression and dsRNA accumulation. In sup-

port of this, we confirmed that the knockdown
of HP1a in human iPSC-differentiated neurons
resulted not only in the accumulation of dsRNA
but also in caspase-3 activation, a marker of
apoptosis.
Although further studies are needed to delin-

eate the precise mechanism by which poly(PR)
causes lamin invaginations, one potential cause
or consequence is defects in nucleocytoplasmic
transport proteins, which have previously been
implicated in c9FTD/ALS (15, 28, 56).We observed
that RanGAP1 was abnormally distributed in all
poly(PR)-positive cells in GFP-(PR)50 mice, and
NPC protein abnormalities were also found,
albeit less frequently. The exact contribution of
these phenomena to the neurodegeneration and
behavioral deficits of GFP-(PR)50 mice remains
to be resolved.
Overall, our studies provide compelling evi-

dence that, by interacting with DNA, eliciting
aberrant histone posttranslational modifications,
and disrupting HP1a liquid phases, poly(PR) ad-
versely influences heterochromatin structural

organization. Consequently, RE expression is
induced and dsRNA accumulates, contributing
to the neurodegeneration seen in patients with
c9FTD/ALS.Rescuinghistonemethylation, lamin,
and HP1a abnormalities and/or inhibiting the
abnormal expression of REs may represent
promising therapeutic strategies for treating
c9FTD/ALS.

Materials and methods summary

Detailed materials and methods can be found
in the supplementary materials.

Generation of plasmids

To generate the AAV-GFP-(PR)50 plasmid, a
pEGFP-C1-(PR)50 plasmid produced in our pre-
vious study (59) was subcloned into a modified
AAV packaging vector containing the cytomeg-
alovirus (CMV)–enhanced chicken b-actin pro-
moter and the enhanced GFP (EGFP) coding
sequence. To generate the HP1a-His plasmid,
cDNA of an HP1a fragment was ligated to the
NdeI and XhoI restriction sites of a pET-30a
vector (69909-3, EMDMillipore). To generate
Lenti-HP1a-sgRNA plasmids, we chose five sgRNA
sequences against HP1a (CBX5) described in a
previous study (60). The forward and reverse
oligonucleotides were annealed and then lig-
ated to the BstXI and BlpI restriction sites of a
pU6-sgRNA EF1Alpha-puro-T2A-BFP vector (53).
The sequence of GFP-(PR)50 and primer sequen-
ces for cloning are listed in tables S3 and S4,
respectively.

Virus production

To produce recombinant AAV1 (rAAV1) virus,
AAV vectors expressing GFP or GFP-(PR)50 were
cotransfected with helper plasmids in human
embryonic kidney (HEK) 293T cells. Cells were
harvested 72 hours after transfection and lysed in
the presence of 0.5% sodiumdeoxycholate (SDS)
by freeze thawing, and the virus was isolated by
using a discontinuous iodixanol gradient. The
genomic titer of each virus was determined by
qPCR. To produce lentivirus, HEK293T cells
were cotransfected with plasmids of HP1a-
sgRNA, psPAX2 (12260, Addgene), pMD2.G
(12259, Addgene), and pAdVAntage (E1711,
Promega) by using Lipofectamine 2000 (11668-
019, Thermo Fisher Scientific). Media contain-
ing virus were harvested, filtered, and used to
transduce dCas9-iPSCs.

Approvals

All procedures using mice were performed in ac-
cordance with the National Institutes of Health
Guide for the Care andUse of LaboratoryAnimals
(61) and approved by the Mayo Clinic Institu-
tional Animal Care andUse Committee (protocol
number A42014).

Neonatal viral injections

Intracerebroventricular injections of virus in
postnatal-day-0 C57BL/6J pups were performed
as previously described by using 2 ml (1 × 1010

genomes/ml) of AAV1-GFP or AAV1-GFP-(PR)50
solution per cerebral ventricle (39, 56).
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Fig. 5. Poly(PR) caused abnormal expression of REs and dsRNA accumulation. (A) MA plots
of RNA-seq data show up- and down-regulated REs in the cortices and hippocampi of 3-month-old
GFP-(PR)50 mice (n = 7) compared with GFP mice (n = 4). Red dots represent the REs with a
significant change (FDR < 0.10). (B) Validation of REs identified by RNA-seq in the cortices and
hippocampi of 3-month-old GFP (n = 10) or GFP-(PR)50 (n = 9) mice by qPCR. (C) Double
immunofluorescence staining for GFP-(PR)50 and dsRNA in the cortices of 3-month-old GFP mice
(n = 3) or GFP-(PR)50 mice (n = 7). Scale bars, 5 mm. (D) Double immunofluorescence staining for
HP1a and dsRNA in human dCas9-iPSC–differentiated neurons stably expressing HP1a sgRNA 1.
Scale bars, 5 mm. Ctrl, control. (E) Double immunofluorescence staining for active caspase-3 and
dsRNA in human dCas9-iPSC–differentiated neurons stably expressing HP1a sgRNA 1. Scale
bars, 5 mm. Data are presented as the mean ± SEM. Male mice are represented by solid symbols,
whereas female mice are represented by empty symbols. In (B), **P = 0.0015; ##P = 0.0065;
***P = 0.0004; and &&P = 0.0036; two-tailed unpaired t test.
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Behavioral tests
Three-month-old mice expressing GFP (n = 12
mice) or GFP-(PR)50 (n = 11 mice) were subjected
to behavioral analysis in two consecutive weeks
by the Mayo Mouse Behavior Core. On two con-
secutive days of week 1, mice were subjected to
tests of contextual and cued fear conditioning.
On four consecutive days of week 2, the mice
were subjected to the rotarod test. A detailed
description of these tests is provided in the
supplementary materials.

Tissue processing

For RNA, protein, and immunostaining analyses,
mice were euthanized by CO2 and brains were
harvested and cut sagittally across the midline.
Sagittal half brains were immersion fixed in 10%
formalin, embedded in paraffin, sectioned (to
5 mm thick), and mounted on glass. The cortex
and hippocampus of the other half brain were
dissected and frozen on dry ice. Frozen mouse
cortex and hippocampus tissues were homo-
genized in ice-cold tris-EDTA (TE), pH 8.0, with
2× protease and phosphatase inhibitors. Homo-
genates were used for RNA or protein extrac-
tions. For immunoelectron microscopy studies,
mice were anesthetized with sodium ketamine
and xylazine and then perfusedwith 0.9% saline
followed by 4% paraformaldehyde. Brains were
harvested, cut sagittally across the midline, and
placed in 4% paraformaldehyde.

Preparation of brain protein lysates

To prepare protein lysates, 10% Triton X-100
and 10% SDS were added to brain homogenates
at final concentrations of 1% and 2%, respec-
tively. Homogenates were sonicated on ice and
then centrifuged at 16,000 × g for 20 min. Super-

natants were collected as lysates, and protein
concentrations were determined by a bicincho-
ninic acid (BCA) assay (23225, Thermo Fisher
Scientific). Protein lysates were used for Western
blot and immunoassay analyses as described in
the supplementarymaterials by using antibodies
listed in table S5.

Human tissues

Postmortem frontal cortical tissues from FTD
and ALS patients with C9orf72 repeat expansions
were obtained from the Mayo Clinic Florida
Brain Bank. Information on human patients is
provided in table S1. Written informed consent
was obtained from all subjects or their legal next
of kin if theywere unable to give written consent,
and biological samples were obtained withMayo
Clinic Institutional Review Board approval.

Immunohistochemistry and
immunofluorescence staining

Paraffin sections of mouse and human brains
were subjected to immunohistochemistry and
immunofluorescence staining as previously de-
scribed (39, 56). Detailed methods for staining
conditions, information on primary antibodies
used, and quantification of neuropathology are
provided in the supplementary materials and
table S5.

Electrophoretic mobility shift assays

To analyze the binding of (PR)20, (PR)8, or (PA)8
to single- or double-stranded DNA, Cy3-labeled
random, CG-rich, or AT-rich oligonucleotides
were incubatedwith the peptides before samples
were resolved on 4 to 20% tris-borate EDTA (TBE)
gels (Invitrogen) as described in the supplemen-
tary materials.

Postembedding immunoelectron microscopy
To examine the localization of poly(PR) proteins
in mouse brain, immunoelectron microscopy was
performed (56, 59). Thin sections were pretreated
with sodium citrate buffer, and then rabbit poly-
clonal poly(PR) antibody (1:50) was used as the
primary antibody and goat anti-rabbit immuno-
globulin G (IgG) conjugatedwith 18-nm colloidal
gold particles (1:20, Jackson ImmunoResearch
Laboratories) was used as the secondary anti-
body. Thin sections stained with uranyl acetate
and lead citrate were examined with a Philips
208S electronmicroscope (FEI) fittedwith a Gatan
831 Orius charge-coupled device (CCD) camera.

RNA extraction, reverse transcription,
and qPCR

To extract total RNA in mouse brain, 1 volume
of brain homogenate was mixed with 3 volumes
of Trizol LS reagent (10296010, Thermo Fisher
Scientific) and frozen on dry ice. One day later,
total RNA was extracted by using the Direct-zol
RNA MiniPrep kit (R2073, Zymo Research).
To extract total RNA from iPSC-differentiated
neurons, cell pellets were lysed in TRI reagent
and then total RNA was extracted by using the
Direct-zol RNA MiniPrep kit. cDNA was ob-
tained by reverse transcription PCR by using
1000 ng of RNAwith randomprimers and a high-
capacity cDNA transcription kit (4368814, Applied
Biosystems). To quantify RNA levels of the indi-
cated transcripts in mouse brain or cultured cells,
qPCR was conducted as described in the supple-
mentary materials. Primer sequences are listed in
table S6. Relative RNA expression levels of Gfap,
CD68, and HP1a were normalized to Gapdh or
GAPDH values (endogenous transcript controls).

RNA-seq, Gene Ontology, and repetitive
element analyses

The library preparation and RNA-seq were per-
formed by the Mayo Clinic Sequencing Core Fac-
ility (Rochester, MN) as previously described (39)
and as detailed in the supplementary materials.
After the preparation of the libraries, samples
were subjected to quality control, cluster genera-
tion, and sequencing on the Illumina HiSeq
2000 platform. All reads had a read length of
100 bp and were paired-end. The number of
reads per sample is listed in table S7. Weighted
gene coexpression network analysis, the Gene
Ontology overrepresentation test, differential ex-
pression analysis, and RE analysis were performed
as described in the supplementary materials.

Purification of recombinant
HP1a proteins

HP1a-His plasmid was used for transforma-
tion inRosetta(DE3)pLysS competent cells (709563,
EMD4Biosciences). To induce the expression of
recombinant proteins, bacteria were cultured
overnight at 16°C in the presence of 0.5 mM
isopropyl b-D-1-thiogalactopyranoside. After centri-
fugation, the bacterial pellet was washed, lysed,
sonicated, and centrifuged. The resulting super-
natant was applied to a HisTrap HP histidine-
tagged protein purification column (17524801,

Zhang et al., Science 363, eaav2606 (2019) 15 February 2019 7 of 9

Fig. 6. Expression of GFP-(PR)50 in mice caused abnormalities of RanGAP1 and NPC proteins
but did not lead to TDP-43 pathology. (A) Double immunofluorescence staining for GFP-(PR)50
and RanGAP1 in the cortices of 3-month-old GFP (n = 11) or GFP-(PR)50 (n = 7) mice. Scale bars,
5 mm. (B) Double immunofluorescence staining for GFP-(PR)50 and NPC proteins in the cortices
of 3-month-old GFP or GFP-(PR)50 mice (n = 4 mice per group). Scale bars, 5 mm. Insets in (A)
and (B) show boxed areas at higher magnification. (C) Double immunofluorescence staining
for GFP-(PR)50 and TDP-43 in the cortices of 3-month-old GFP or GFP-(PR)50 mice (n = 3 mice
per group). Scale bars, 5 mm.
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GE Healthcare), and the recombinant proteins
were eluted, desalted, and concentrated.

In vitro DPR protein and HP1a assays

HP1a liquid droplets (90 mM monomer) were
formed in buffer containing 50mM tris, pH 7.5.
The preformedHP1a dropletswere spotted onto
a coverslip and imaged for 5 min, and then
245 mM(PR)8 or (PA)8 peptideswere added to the
sample and the sample was imaged for another
5 to 10 min.

i3N iPSC culture and neuronal
differentiation

We modified a well-characterized control iPSC
line (WTC11) that harbors a dox-inducible NGN2
transgene at the AAVS1 locus (i3N) (62, 63).
dCas9-BFP-KRAB was stably expressed in these
i3N iPSCs via TALEN-mediated integration of a
CAG-dCas9-BFP-KRAB expression cassette into
the CLYBL safe harbor locus (55). The dCas9-
BFP-KRAB iPSCs were transduced with lentivi-
rus expressing HP1a-sgRNA for 3 days and then
selected by the addition of puromycin. To dif-
ferentiate i3N dCas9-BFP-KRAB iPSCs express-
ing HP1a sgRNA into neurons, iPSCs were
dissociated by using Accutase (#AT-104, Inno-
vative Cell Technologies) and then seeded onto
dishes coated with Matrigel (354230, Corning).
Three days after differentiation, cells were dis-
sociated by using Accutase and then seeded
onto poly-L-ornithine–coated plates (6-well plate)
or glass coverslips (24-well plate) at a density
of 7 × 105 or 2 × 104 cells per well, respectively.
Six days later, the neurons were fixed with 4%
paraformaldehyde for immunofluorescence stain-
ing or harvested for Western blot and qPCR
analyses.

Statistics

Data are presented as the mean ± the standard
error of the mean (SEM) and analyzed with a
two-tailed unpaired t test or one-way or two-way
analysis of variance (ANOVA) followed by Tukey’s
post hoc analysis (Prism statistical software). End
points of interest [i.e., body weight, brain weight,
poly(PR)-positive cells, poly(PR) expression,NeuN-
positive cortical neurons, Purkinje cell density,
transgene RNA levels, Gfap and CD68 mRNA
expression, and Gfap and CD68 immunopositiv-
ity] were compared between male and female
mice within each cohort. Other than body weight,
no sex differences were observed. With the ex-
ception of body weight, analyses were performed
on all mice within a given cohort. Data are pres-
ented such as to distinguish male and female
mice; male mice are represented by solid sym-
bols on dot plots, and female mice by empty
symbols. Statistical analysis of RNA-seq data is
described in the section RNA-seq, Gene Ontol-
ogy, and RE analyses.
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heterochromatin function, a tightly packed form of DNA that represses gene expression.
motor and memory impairments. These detrimental effects resulted from poly(PR)-induced perturbation of 

in the brain. They found that poly(PR) caused neuron loss as well as−−prolinearginine dipeptide repeat protein, poly(PR)
−− engineered a mouse model to study the consequences of one of these dipeptideset al.remains unclear. Zhang 

leads to the abnormal production of proteins of repeating dipeptides, but their contribution to disease pathogenesis
cause of two neurodegenerative diseases: frontotemporal dementia and amyotrophic lateral sclerosis. This expansion 

) gene is the most common knownC9orf72A repeat expansion in the chromosome 9 open reading frame 72 (
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